309 research outputs found

    The Patient Package Insert and Pharmacist Liability

    Get PDF

    Topic Identification for Speech without ASR

    Full text link
    Modern topic identification (topic ID) systems for speech use automatic speech recognition (ASR) to produce speech transcripts, and perform supervised classification on such ASR outputs. However, under resource-limited conditions, the manually transcribed speech required to develop standard ASR systems can be severely limited or unavailable. In this paper, we investigate alternative unsupervised solutions to obtaining tokenizations of speech in terms of a vocabulary of automatically discovered word-like or phoneme-like units, without depending on the supervised training of ASR systems. Moreover, using automatic phoneme-like tokenizations, we demonstrate that a convolutional neural network based framework for learning spoken document representations provides competitive performance compared to a standard bag-of-words representation, as evidenced by comprehensive topic ID evaluations on both single-label and multi-label classification tasks.Comment: 5 pages, 2 figures; accepted for publication at Interspeech 201

    Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring

    Get PDF
    Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∌100 million molecules-per-cell, a median of ∌1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. Reliable and accurate quantification of the proteins present in a cell or tissue remains a major challenge for post-genome scientists. Proteins are the primary functional molecules in biological systems and knowledge of their abundance and dynamics is an important prerequisite to a complete understanding of natural physiological processes, or dysfunction in disease. Accordingly, much effort has been spent in the development of reliable, accurate and sensitive techniques to quantify the cellular proteome, the complement of proteins expressed at a given time under defined conditions (1). Moreover, the ability to model a biological system and thus characterize it in kinetic terms, requires that protein concentrations be defined in absolute numbers (2, 3). Given the high demand for accurate quantitative proteome data sets, there has been a continual drive to develop methodology to accomplish this, typically using mass spectrometry (MS) as the analytical platform. Many recent studies have highlighted the capabilities of MS to provide good coverage of the proteome at high sensitivity often using yeast as a demonstrator system (4⇓⇓⇓⇓⇓–10), suggesting that quantitative proteomics has now “come of age” (1). However, given that MS is not inherently quantitative, most of the approaches produce relative quantitation and do not typically measure the absolute concentrations of individual molecular species by direct means. For the yeast proteome, epitope tagging studies using green fluorescent protein or tandem affinity purification tags provides an alternative to MS. Here, collections of modified strains are generated that incorporate a detectable, and therefore quantifiable, tag that supports immunoblotting or fluorescence techniques (11, 12). However, such strategies for copies per cell (cpc) quantification rely on genetic manipulation of the host organism and hence do not quantify endogenous, unmodified protein. Similarly, the tagging can alter protein levels - in some instances hindering protein expression completely (11). Even so, epitope tagging methods have been of value to the community, yielding high coverage quantitative data sets for the majority of the yeast proteome (11, 12). MS-based methods do not rely on such nonendogenous labels, and can reach genome-wide levels of coverage. Accurate estimation of absolute concentrations i.e. protein copy number per cell, also usually necessitates the use of (one or more) external or internal standards from which to derive absolute abundance (4). Examples include a comprehensive quantification of the Leptospira interrogans proteome that used a 19 protein subset quantified using selected reaction monitoring (SRM)1 to calibrate their label-free data (8, 13). It is worth noting that epitope tagging methods, although also absolute, rely on a very limited set of standards for the quantitative western blots and necessitate incorporation of a suitable immunogenic tag (11). Other recent, innovative approaches exploiting total ion signal and internal scaling to estimate protein cellular abundance (10, 14), avoid the use of internal standards, though they do rely on targeted proteomic data to validate their approach. The use of targeted SRM strategies to derive proteomic calibration standards highlights its advantages in comparison to label-free in terms of accuracy, precision, dynamic range and limit of detection and has gained currency for its reliability and sensitivity (3, 15⇓–17). Indeed, SRM is often referred to as the “gold standard proteomic quantification method,” being particularly well-suited when the proteins to be quantified are known, when appropriate surrogate peptides for protein quantification can be selected a priori, and matched with stable isotope-labeled (SIL) standards (18⇓–20). In combination with SIL peptide standards that can be generated through a variety of means (3, 15), SRM can be used to quantify low copy number proteins, reaching down to ∌50 cpc in yeast (5). However, although SRM methodology has been used extensively for S. cerevisiae protein quantification by us and others (19, 21, 22), it has not been used for large protein cohorts because of the requirement to generate the large numbers of attendant SIL peptide standards; the largest published data set is only for a few tens of proteins. It remains a challenge therefore to robustly quantify an entire eukaryotic proteome in absolute terms by direct means using targeted MS and this is the focus of our present study, the Census Of the Proteome of Yeast (CoPY). We present here direct and absolute quantification of nearly 2000 endogenous proteins from S. cerevisiae grown in steady state in a chemostat culture, using the SRM-based QconCAT approach. Although arguably not quantification of the entire proteome, this represents an accurate and rigorous collection of direct yeast protein quantifications, providing a gold-standard data set of endogenous protein levels for future reference and comparative studies. The highly reproducible SIL-SRM MS data, with robust CVs typically less than 20%, is compared with other extant data sets that were obtained via alternative analytical strategies. We also report a matched high quality transcriptome from the same cells using RNA-seq, which supports additional calculations including a refined estimate of the total protein content in yeast cells, and a simple linear model of translation explaining 70% of the variance between RNA and protein levels in yeast chemostat cultures. These analyses confirm the validity of our data and approach, which we believe represents a state-of-the-art absolute quantification compendium of a significant proportion of a model eukaryotic proteome

    Evaporation fractionation in a peatland drainage network affects stream water isotope composition

    Get PDF
    There is increasing interest in improving understanding of evaporation within a catchment for an enhanced representation of dominant processes in hydrological models. We used a dual‐isotope approach within a nested experimental design in a boreal catchment in the Scottish Highlands (Bruntland Burn) to quantify the spatiotemporal dynamics of evaporation fractionation in a peatland drainage network and its effect on stream water isotopes. We conducted spatially distributed water sampling within the saturated peatland under different wetness conditions. We used the lc‐excess—which describes the offset of a water sample from the local meteoric water line in the dual‐isotope space—to understand the development of kinetic fractionation during runoff in a peatland network. The evaporation fractionation signal correlated positively with the potential evapotranspiration and negatively with the discharge. The variability of the isotopic enrichment within the peatland drainage network was higher with higher potential evapotranspiration and lower with higher discharge. We found an increased evaporation fractionation toward the center of the peatland, while groundwater seepage from minerogenic soils influenced the isotopic signal at the edge of the peatland. The evaporation signal was imprinted on the stream water, as the discharge from a peatland dominated subcatchment showed a more intense deviation from the local meteoric water line than the discharge from the Bruntland Burn. The findings underline that evaporation fractionation within peatland drainage networks affects the isotopic signal of headwater catchments, which questions the common assumption in hydrological modeling that the isotopic composition of stream waters did not undergo fractionation processes

    Mitochondrial complex 1 activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration

    Get PDF
    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70–71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions

    Short-Term Exercise Training Inconsistently Influences Basel Testosterone in Older Men: A Systematic Review and Meta-Analysis

    Get PDF
    Background The age-associated decrease in testosterone is one mechanism suggested to accelerate the aging process in males. Therefore, approaches to increase endogenous testosterone may be of benefit. The aim of this paper was to undertake a Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-accordant meta-analysis concerning the effect of exercise on total (TT), bioavailable (bio-T), free (free-T), and salivary (sal-T) testosterone in older males. Methods Databases were searched up to and including 20th February 2018 for the terms ‘testosterone AND exercise AND aging AND males’, ‘testosterone AND exercise AND old AND males’, ‘testosterone AND training AND aging AND males’ and ‘testosterone AND training AND old AND males’. From 1259 originally identified titles, 22 studies (randomized controlled trials; RCTs; n=9, and uncontrolled trials; UCTs; n=13) were included which had a training component, participants ≄60 years of age, and salivary or serum testosterone as an outcome measure. Meta-analyses were conducted on change to testosterone following training using standardised difference in means (SDM) and random effects models. Results The overall SDM for endurance training, resistance training, and interval training was 0.398 (95% CI = 0.034 – 0.761; P = 0.010), -0.003 (95% CI = -0.330 – 0.324; P = 0.986), and 0.283 (95% CI = 0.030 – 0.535; P = 0.028) respectively. Resistance training exhibited a qualitative effect of hormone fraction whereby free-T resulted in the greatest SDM (0.253; 95% CI = -0.043 – 0.549; P = 0.094), followed by TT (0.028; 95% CI = -0.204 – 0.260; P = 0.813), and resistance training negatively influenced bio-T (-0.373; 95% CI = -0.789 – 0.042; P = 0.078). Due to the small number of studies, subgroup analysis was not possible for endurance training and interval training studies. Conclusions Data from the present investigation suggests that resistance training does not significantly influence basal testosterone in older men. Magnitude of effect was influenced by hormone fraction, even within the same investigation. Aerobic training and interval training did result in small, significant increases in basal testosterone. The magnitude of effect is small but the existing data are encouraging and may be an avenue for further research

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • 

    corecore